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Abstract It is known since 1977 that the number K of Kekulé structures of a hexag-
onal chain is equal to the topological Z-index of a pertinently constructed “caterpillar”
tree. Based on this relation we now connect K with some of other, seemingly unre-
lated, concepts: continuants (from number theory) and matchings of the path–graph
(further related to Fibonacci numbers). We also arrive at a tridiagonal determinantal
expression for K .

Keywords Hosoya index · Topological index · Z-index · Hexagonal chain ·
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1 Introduction

In 1971 one of the present authors [1] introduced a molecular-graph-based structure
descriptor that he named “topological index” and denoted by Z. In this paper we call
this quantity the Z-index.1 A legion of chemical applications and mathematical prop-
erties of the Z-index has been discovered; for details see the recent surveys [2,3] and
some of the newest papers published in this area [4–9].

The Z-index is defined as follows. Let G be a molecular graph and let p(G, j),
j = 2, 3, . . ., be the number of selections of j disjoint (i.e., mutually non-touching)

1 In the current literature Z is usually referred to as the Hosoya index.
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edges in G. In addition, p(G, 1) is equal to the number of edges of G, and p(G, 0) = 1.
Then

Z = Z(G) =
∑

j≥0

p(G, j). (1)

Two immediate properties of the Z-index [1] will be needed in the following con-
siderations.

Isolated vertices have no effect on the value of Z. Thus, if G′ is obtained from G

by adding to it any number of isolated vertices, then

Z(G′) = Z(G). (2)

If the graph G consists of disconnected components G1,G2, . . . ,Gt , then

Z(G) = Z(G1) × Z(G2) × · · · × Z(Gt). (3)

The enumeration of the Kekulé structures in benzenoid molecules is a traditional
and extensively elaborated field of mathematical chemistry [10,11]. Methods for deter-
mining the Kekulé structure count K of hexagonal chains were discovered already in
the pioneering days [12], and were re-iterated from time to time [13–17].

In 1977 one of the present authors [18] discovered a curious relation between the
sextet polynomial of a hexagonal chain and the matching polynomial of a caterpil-
lar tree (for details see below). As a special case of this result, the Kekulé structure
count of a hexagonal chain was shown to be equal to the Z-index of the corresponding
caterpillar.

A hexagonal chain or unbranched catacondensed benzenoid system is a benzenoid
system in which no hexagon has more than two neighbors. An example of a hexagonal
chain is given in Fig. 1.

Denote the number of hexagons of a hexagonal chain by h. The hexagons of a hex-
agonal chain may be annelated in only three ways [11]: Each chain possesses exactly
two terminal hexagons (L1) whereas all other hexagons are annelated either linearly
(L2) or angularly (A), see Fig. 2.

To each hexagonal system a string of h symbols L and A can be associated, indi-
cating the mode of annelation of the consecutive hexagons, starting from a terminal
hexagon; the modes L1 and L2 are not distinguished. This string is referred to as the
LA-sequence [11,18]. For instance, the LA-sequence of the chain depicted in Fig. 1 is

H C=C(H)

Fig. 1 A hexagonal chain H with 11 hexagons, and the corresponding caterpillar tree C = C(H) with 11
edges

123



J Math Chem (2008) 44:559–568 561

L1 L2 A

Fig. 2 Annelation modes of hexagons that occur in hexagonal chains

LLLALLALAAL. Abbreviating LL by L2, LLL by L3, etc. the latter LA-sequence
is written as L3AL2ALAL0AL.

The general form of the LA-sequence of a hexagonal chain in which there are n−1
angularly annelated hexagons is

Lk1ALk2ALk3A · · · Lkn−1ALkn

where ki is the number of L-mode hexagons lying between the (i −1)th and ith angu-
larly annelated hexagon, i = 2, . . . , n − 1, whereas k1 and kn are, respectively, the
number of the L-mode hexagons before the first and after the last A-mode hexagon.
Therefore,

k1, kn ≥ 1, k2, . . . , kn−1 ≥ 0

and

k1 + k2 + · · · + kn + (n − 1) = h.

Let Pn denote the n-vertex path, and let its vertices be labelled consecutively by
1, 2, . . . , n, see Fig. 3.

1
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... ...

...

...

n-1

n-1

n-2

n-2

n

n

Pn

Cn(k1,k2,...,kn-2,kn-1,kn) C1(k1)

} }}}} }

k1 k1k2 kn-2 kn-1 kn

Fig. 3 The n-vertex path Pn and the caterpillar tree C with parameters k1, k2, . . . , kn. In the case n = 1
the caterpillar tree C1(k1) is just the (k1 + 1)-vertex star. Recall that the Z-index of such a star is equal to
k1 + 1
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Then a caterpillar tree C with parameters k1, k2, . . . , kn is obtained by attaching
ki pendent vertices to the ith vertex of Pn for i = 1, 2, . . . , n. This caterpillar tree will
be denoted by Cn(k1, k2, . . . , kn). It has

k1 + k2 + · · · + kn + n

vertices and

k1 + k2 + · · · + kn + (n − 1)

edges. An example of a caterpillar tree, namely C5(3, 2, 1, 0, 1), is given in Fig. 1.
The general form of a caterpillar tree is displayed in Fig. 3.

The main result obtained in [18] is the following:

Theorem 1 If H is a hexagonal chain whose LA-sequence is Lk1ALk2A · · ·
Lkn−1ALkn , then the j th coefficient s(H, j) of its sextet polynomial is equal to the num-
ber p(C, j) of selections of j disjoint edges in the caterpillar tree C = Cn(k1, k2, . . . ,

kn).
Recall that the sextet polynomial of a benzenoid system H is defined as σ(H, x) =∑

j≥0
s(H, j) xj , where s(H, j) is equal to the number of generalized Clar formulas

of H with exactly j aromatic sextets; for more details on this matter (which are not
needed for the present considerations) see [11,18–20]. Knowing that the sum of the
coefficients of the sextet polynomial is equal to the Kekulé structure count [11,19],
and bearing in mind Eq. 1, we arrive at [18]:

Theorem 2 If H is a hexagonal chain whose LA-sequence is Lk1ALk2A · · ·
Lkn−1ALkn , then the number K(H) of its Kekulé structures is equal to the Z-index of
the caterpillar tree Cn(k1, k2, . . . , kn).

For the caterpillar tree associated (in the sense of Theorems 1 and 2) with the hex-
agonal chain H we will write C(H). Then Theorem 2 is tantamount to the equality

K(H) = Z(C(H)). (4)

Formula (4) is a simple, but quite unusual connection between two such seemingly
unrelated concepts as the Kekulé structure count and the Z-index. Its applications
were discussed in a number of subsequent papers [21–26].2

2 The caterpillar C(H) is sometimes referred to as the Gutman tree.
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2 An excursion to classical mathematics

Let p and q be two mutually prime integers, p < q. Then the rational number Q = p/q

can be presented in the form of a continued fraction [27]:

Q = 1

a1 + 1

a2 + 1

· · · + 1

an−1 + 1

an

(5)

In what follows we will be concerned only with finite continued fractions, such as (5).
Leonhard Euler (whose 300th anniversary of the birth is just in this year) posed and

solved the inverse problem: Suppose that we know the numbers a1, a2, . . . , an. How
can we (in an efficient manner) compute Q?

For this, Euler introduced the so-called continuants (or continuant polynomials).
These are defined recursively via [28]

Ln(x1, x2, . . . , xn) = xn Ln−1(x1, x2, . . . , xn−1) + Ln−2(x1, x2, . . . , xn−2) (6)

with initial conditions

L0(∗) = 1

L1(x1) = x1

L2(x1, x2) = x1 x2 + 1.

Then,

Q = Ln−1(a2, a3, . . . , an)

Ln(a1, a2, a3, . . . , an)
.

The continuant satisfies the following tridiagonal determinantal expression:

Ln(x1, x2, . . . , xn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 1 0 0 · · · 0
−1 x2 1 0 · · · 0
0 −1 x3 1 · · · 0
...

...
...

...
...

...

0 0 · · · −1 xn−1 1
0 0 · · · 0 −1 xn

∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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3 On the Z-index of caterpillar trees

If G is any graph, and if e is its edge connecting the vertices u and v, then the Z-index
of G can be recursively calculated by means of the relation [1]

Z(G) = Z(G − e) + Z(G − u − v).

Consider now a caterpillar tree Cn(k1, k2, . . . , kn) and its edge en−1 connecting the
vertices labelled by n−1 and n (see Fig. 3). We denote these two vertices by vn−1 and
vn. Then the subgraph Cn(k1, k2, . . . , kn)−en−1 consists of the union of the caterpillar
tree Cn−1(k1, k2, . . . , kn−1) and the (kn+1)-vertex star. Further, Cn(k1, k2, . . . , kn)−
vn−1 − vn consists of the union of the caterpillar tree Cn−2(k1, k2, . . . , kn−2) and
kn−1 + kn isolated vertices.

In view of Eqs. 2 and 3 and the fact that the Z-index of the t-vertex star is equal
to t , we have

Z(Cn(k1, k2, . . . , kn) − en−1) = Z(Cn−1(k1, k2, . . . , kn−1) × (kn + 1)

Z(Cn(k1, k2, . . . , kn) − vn−1 − vn) = Z(Cn−2(k1, k2, . . . , kn−2))

from which follows

Z(Cn(k1, k2, . . . , kn)) = (kn + 1) Z(Cn−1(k1, k2, . . . , kn−1))

+Z(Cn−2(k1, k2, . . . , kn−2)). (7)

The initial conditions for this recursion relation are obtained by direct and easy cal-
culation:

Z(C0(∗)) = 1

Z(C1(k1)) = k1 + 1

Z(C2(k1, k2)) = (k1 + 1)(k2 + 1) + 1

By comparing (7) and its initial conditions, with the recursion relation (6) and its
initial conditions, we immediately recognize that the Z-index of the caterpillar trees
coincides with Euler’s continuant. In particular,

Z(Cn(k1, k2, . . . , kn)) = Ln(k1 + 1, k2 + 1, . . . , kn + 1). (8)

This remarkable connection between the Z-index of caterpillar trees and continuants
was recently discovered by one of the present authors [29].

By combining (8) with Eq. 4 we arrive at some bizarre, hitherto not reported, iden-
tities for the Kekulé structure count of hexagonal chains.

Before doing this we establish here another expression for the Z-index of caterpillar
trees.
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Consider the n-vertex path Pn and the caterpillar tree C = Cn(k1, k2, . . . , kn),
shown in Fig. 3. Denote by ei the edge of both Pn and C, connecting the vertices
labelled by i and i + 1.

Let M be a selection of some disjoint edges of Pn and let M(Pn) be the set of all
such selections, including the selections of a single edge and the (unique) “selection”
of no edges. Clearly, Z(Pn) = |M(Pn)|. In mathematics, M(Pn) is called the set of
matchings of Pn. Its size, |M(Pn)|, is equal to the nth Fibonacci number [30].

For example, in the case of P10, a selection of disjoint edges may be M∗ =
{e2, e5, e9}. In the case of P5, the set M(P5) consist of the following eight elements:
∅, {e1}, {e2}, {e3}, {e4}, {e1, e3}, {e1, e4}, {e2, e4}.

By definition (1), the Z-index of the caterpillar tree C = Cn(k1, k2, . . . , kn) is
equal to the total number of selections of its disjoint edges. These selections can be
grouped according to the edges e1, e2, . . . , en−1 which they contain. Each such group
corresponds to an element M ∈ M(Pn), and therefore

Z(C) =
∑

M∈M(Pn)

Z(C − [M]) (9)

where C − [M] denotes the subgraph obtained by deleting from C all edges
e1, e2, . . . , en−1, those vertices that are endpoints of the edges from M , and the pendent
vertices attached to them. It is easily seen that C − [M] is a union of stars consisting
of vertices 1, 2, . . . , n that are not endpoints of the edges from M , and the pendent
vertices attached to them.

An illustrative example is depicted in Fig. 4. In this example n = 10 and M∗ =
{e2, e5, e9}. The endpoints of the edges from M∗ are 2, 3, 5, 6, 9, 10. Therefore
C − [M∗] consists of four stars, involving the vertices 1, 4, 7, 8, and

Z(C − [M∗]) = (3 + 1)(5 + 1)(3 + 1)(2 + 1)

1
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3

4

4

4

5

5

6
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7
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8

8

8

9

9

10

10

C=C10(3,1,2,5,1,0,3,2,0,4)

e2 e5 e5

M*

C-[M*]

Fig. 4 An example illustrating formulas (9)–(11). For details see text
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because these stars possess 3, 5, 3, and 2 pendent vertices, i.e., k1 = 3, k4 = 5,

k7 = 3, k8 = 2.
Because for a star with k pendent vertices, Z = k + 1, from (9) follows

Z(C) =
∑

M∈M(Pn)

∏

i �∈M

(ki + 1) (10)

with i �∈ M indicating that the vertex i ∈ {1, 2, . . . , n} is not an endpoint of any of
the edges contained in M . Another form of the same identity is:

Z(C) =
(

n∏

i=1

(ki + 1)

)
∑

M∈M(Pn)

∏

ei∈M

1

(ki + 1)(ki+1 + 1)
. (11)

In order to illustrate formulas (10) and (11) we apply them for the case n = 5. The
eight elements of M(P5) have been specified above. Using these in the earlier given
order we get:

Z(C(k1, k2, k3, k4, k5))

= (k1 + 1)(k2 + 1)(k3 + 1)(k4 + 1)(k5 + 1) + (k3 + 1)(k4 + 1)(k5 + 1)

+(k1 + 1)(k4 + 1)(k5 + 1) + (k1 + 1)(k2 + 1)(k5 + 1)

+(k1 + 1)(k2 + 1)(k3 + 1) + (k5 + 1) + (k3 + 1) + (k1 + 1)

and

Z(C(k1, k2, k3, k4, k5))

= (k1 + 1)(k2 + 1)(k3 + 1)(k4 + 1)(k5 + 1)

[
1 + 1

(k1 + 1)(k2 + 1)

+ 1

(k2 + 1)(k3 + 1)
+ 1

(k3 + 1)(k4 + 1)
+ 1

(k4 + 1)(k5 + 1)

+ 1

(k1 + 1)(k2 + 1)(k3 + 1)(k4 + 1)
+ 1

(k1 + 1)(k2 + 1)(k4 + 1)(k5 + 1)

+ 1

(k2 + 1)(k3 + 1)(k4 + 1)(k5 + 1)

]
.

This, of course, is just another way of writing the continuant-based formula (8).

4 Formulas for Kekulé structure count of hexagonal chains

Combining the relation (4) with the above stated expressions for the Z-index of cat-
erpillar trees we arrive at a series of identities for K(H).

Theorem 3 If H is a hexagonal chain whose LA-sequence is Lk1ALk2 . . . ALkn ,
then the number of Kekulé structures of H is equal to the continuant Ln(k1 + 1, k2 +
1, . . . , kn + 1).
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Theorem 4 If H is a hexagonal chain whose LA-sequence is Lk1ALk2 . . . ALkn , then
the number of Kekulé structures of H is equal to

∣∣∣∣∣∣∣∣∣∣∣∣∣

k1 + 1 1 0 0 · · · 0
−1 k2 + 1 1 0 · · · 0
0 −1 k3 + 1 1 · · · 0
...

...
...

...
...

...

0 0 · · · −1 kn−1 + 1 1
0 0 · · · 0 −1 kn + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Theorem 5 In the notation specified in Eqs. 10 and 11, the number of Kekulé struc-
tures of a hexagonal chain whose LA-sequence is Lk1ALk2 . . . ALkn , is equal to

∑

M∈M(Pn)

∏

i �∈M

(ki + 1)

or
(

n∏

i=1

(ki + 1)

)
∑

M∈M(Pn)

∏

ei∈M

1

(ki + 1)(ki+1 + 1)
.

We do not claim that the above relations are of great practical value for enumerat-
ing the Kekulé structures of hexagonal chains, but these certainly shed light on some
concealed connections between various, seemingly unrelated, fields of mathematics
and mathematical chemistry.
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